6 research outputs found

    Advanced control for floating offshore wind turbines.

    Get PDF
    El contenido de los capítulos 3, 4 y 5 está sujeto a confidencialidad. 117 p.Los aerogeneradores flotantes presentan diversos retos tecnológicos, entre los cuales, las atenuaciones de la dinámica producida por el empuje del viento y la inducida por el oleaje, debido a la baja rigidez hidrodinámica de la plataforma, son vitales. Estas dinámicas no solo influyen en el funcionamiento normal del aerogenerador, sino que además, incrementan las cargas mecánicas de algunos componentes, como la torre y palas del aerogenerador. Por ello, el objetivo de esta tesis es minimizar las dinámicas de los aerogeneradores flotantes, mejorando el funcionamiento a la vez que se reducen las cargas mecánicas producidas en la torre y palas mediante técnicas de control avanzadas, y así, aumentar la eficiencia del aerogenerador y prolongar la vida útil de dichos componentes.La descripción del trabajo incluye el modelado de plataformas flotantes y el desarrollo de dos lazos de control, que respectivamente realimentan la velocidad de la góndola y los momentos flectores en las raíces de las palas, para la contribución en la regulación del ángulo de pitch de las palas del aerogenerador. Además, se estudia la relación de las dimensiones de las plataformas flotantes y el desempeño del controlador diseñado con el fin de reducir las dimensiones de la plataforma manteniendo las propiedades del funcionamiento del aerogenerador. Se proponen dos métodos innovadores para la linealización de los modelos no lineales de aerogeneradores flotantes y la optimización de los lazos de control diseñados en esta tesis. Los resultados mostrados demuestran la eficacia del controlador diseñado en la consecución de los objetivos propuestos

    Advanced control for floating offshore wind turbines.

    Get PDF
    El contenido de los capítulos 3, 4 y 5 está sujeto a confidencialidad. 117 p.os aerogeneradores flotantes presentan diversos retos tecnológicos, entre los cuales, las atenuaciones de la dinámica producida por el empuje del viento y la inducida por el oleaje, debido a la baja rigidez hidrodinámica de la plataforma, son vitales. Estas dinámicas no solo influyen en el funcionamiento normal del aerogenerador, sino que además, incrementan las cargas mecánicas de algunos componentes, como la torre y palas del aerogenerador. Por ello, el objetivo de esta tesis es minimizar las dinámicas de los aerogeneradores flotantes, mejorando el funcionamiento a la vez que se reducen las cargas mecánicas producidas en la torre y palas mediante técnicas de control avanzadas, y así, aumentar la eficiencia del aerogenerador y prolongar la vida útil de dichos componentes.La descripción del trabajo incluye el modelado de plataformas flotantes y el desarrollo de dos lazos de control, que respectivamente realimentan la velocidad de la góndola y los momentos flectores en las raíces de las palas, para la contribución en la regulación del ángulo de pitch de las palas del aerogenerador. Además, se estudia la relación de las dimensiones de las plataformas flotantes y el desempeño del controlador diseñado con el fin de reducir las dimensiones de la plataforma manteniendo las propiedades del funcionamiento del aerogenerador. Se proponen dos métodos innovadores para la linealización de los modelos no lineales de aerogeneradores flotantes y la optimización de los lazos de control diseñados en esta tesis. Los resultados mostrados demuestran la eficacia del controlador diseñado en la consecución de los objetivos propuestos

    Using Multiple Fidelity Numerical Models for Floating Offshore Wind Turbine Advanced Control Design

    Get PDF
    This paper summarises the tuning process of the Aerodynamic Platform Stabiliser control loop and its performance with Floating Offshore Wind Turbine model. Simplified Low-Order Wind turbine numerical models have been used for the system identification and control tuning process. Denmark Technical University's 10 MW wind turbine model mounted on the TripleSpar platform concept was used for this study. Time-domain simulations were carried out in a fully coupled non-linear aero-hydro-elastic simulation tool FAST, in which wind and wave disturbances were modelled. This testing yielded significant improvements in the overall Floating Offshore Wind Turbine performance and load reduction, validating the control technique presented in this work.This work was partially funded by the Spanish Ministry of Economy and Competitiveness through the research project DPI2017-82930-C2-2-R

    An Advanced Control Technique for Floating Offshore Wind Turbines Based on More Compact Barge Platforms

    Get PDF
    Hydrodynamic Floating Offshore Wind Turbine (FOWT) platform specifications are typically dominated by seaworthiness and maximum operating platform-pitch angle-related requirements. However, such specifications directly impact the challenge posed by an FOWT in terms of control design. The conventional FOWT systems are typically based on large, heavy floating platforms, which are less likely to suffer from the negative damping effect caused by the excessive coupling between blade-pitch control and platform-pitch motion. An advanced control technique is presented here to increase system stability for barge type platforms. Such a technique mitigates platform-pitch motions and improves the generator speed regulation, while maintaining blade-pitch activity and reducing blade and tower loads. The NREL's 5MW + ITI Energy barge reference model is taken as a basis for this work. Furthermore, the capabilities of the proposed controller for performing with a more compact and less hydrodynamically stable barge platform is analysed, with encouraging results.This work has been partially funded by the Spanish Ministry of Economy and Competitiveness through the research project DPI2017-82930-C2-2-R

    Advanced control for floating offshore wind turbines.

    No full text
    El contenido de los capítulos 3, 4 y 5 está sujeto a confidencialidad. 117 p.os aerogeneradores flotantes presentan diversos retos tecnológicos, entre los cuales, las atenuaciones de la dinámica producida por el empuje del viento y la inducida por el oleaje, debido a la baja rigidez hidrodinámica de la plataforma, son vitales. Estas dinámicas no solo influyen en el funcionamiento normal del aerogenerador, sino que además, incrementan las cargas mecánicas de algunos componentes, como la torre y palas del aerogenerador. Por ello, el objetivo de esta tesis es minimizar las dinámicas de los aerogeneradores flotantes, mejorando el funcionamiento a la vez que se reducen las cargas mecánicas producidas en la torre y palas mediante técnicas de control avanzadas, y así, aumentar la eficiencia del aerogenerador y prolongar la vida útil de dichos componentes.La descripción del trabajo incluye el modelado de plataformas flotantes y el desarrollo de dos lazos de control, que respectivamente realimentan la velocidad de la góndola y los momentos flectores en las raíces de las palas, para la contribución en la regulación del ángulo de pitch de las palas del aerogenerador. Además, se estudia la relación de las dimensiones de las plataformas flotantes y el desempeño del controlador diseñado con el fin de reducir las dimensiones de la plataforma manteniendo las propiedades del funcionamiento del aerogenerador. Se proponen dos métodos innovadores para la linealización de los modelos no lineales de aerogeneradores flotantes y la optimización de los lazos de control diseñados en esta tesis. Los resultados mostrados demuestran la eficacia del controlador diseñado en la consecución de los objetivos propuestos

    A Feedback Control Loop Optimisation Methodology for Floating Offshore Wind Turbines

    Get PDF
    Wind turbines usually present several feedback control loops to improve or counteract some specific performance or behaviour of the system. It is common to find these multiple feedback control loops in Floating Offshore Wind Turbines where the system perferformance is highly influenced by the platform dynamics. This is the case of the Aerodynamic Platform Stabiliser and Wave Rejection feedback control loops which are complementaries to the conventional generator speed PI control loop when it is working in an above rated wind speed region. The multiple feedback control loops sometimes can be tedious to manually improve the initial tuning. Therefore, this article presents a novel optimisation methodology based on the Monte Carlo method to automatically improve the manually tuned multiple feedback control loops. Damage Equivalent Loads are quantified for minimising the cost function and automatically update the control parameters. The preliminary results presented here show the potential of this novel optimisation methodology to improve the mechanical fatigue loads of the desired components whereas maintaining the overall performance of the wind turbine system. This methodology provides a good balance between the computational complexity and result effectiveness. The study is carried out with the fully coupled non-linear NREL 5-MW wind turbine model mounted on the ITI Energy's barge and the FASTv8 code.This work has been partially funded by the Spanish Ministry of Economy and Competitiveness through the research project DPI2017-82930-C2-2-R
    corecore